The naringin/carboxymethyl chitosan/sodium hyaluronate/silk fibroin scaffold facilitates the healing of diabetic wounds by restoring the ROS-related dysfunction of vascularization and macrophage polarization

International journal of biological macromolecules(2024)

引用 0|浏览1
暂无评分
摘要
Chronic diabetic wounds remain a globally recognized clinical challenge, which occurs mainly due to the disturbances of wound microenvironmental induced by high concentrations of reactive oxygen species (ROS). Impairments in angiogenesis and inflammation in the wound microenvironment ultimately impede the normal healing process. Therefore, targeting macrophage and vascular endothelial cell dysfunction is a promising therapeutic strategy. In our study, we fabricated artificial composite scaffolds composed of naringin/carboxymethyl chitosan/sodium hyaluronate/silk fibroin (NG/CMCS/HA/SF) to promote wound healing. The NG/CMCS/HA/SF scaffold demonstrated favorable anti-inflammatory, anti-oxidative, and pro-angiogenic properties in both in vitro and in vivo experiments, effectively promoting the healing of diabetic wounds. The positive therapeutic effects observed indicate that the composite scaffolds have great potential in clinical wound healing applications.
更多
查看译文
关键词
Reactive oxygen species (ROS),Vascularization,Macrophage,Composite scaffold,Diabetic wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要