Compression performance of 3D-printed thermoplastic auxetic structures

Pan He, Siwen Wang, Miaomiao Zhang,Lin Sang,Liyong Tong,Wenbin Hou

THIN-WALLED STRUCTURES(2024)

引用 0|浏览4
暂无评分
摘要
The influence of lattice structural design on the mechanical property has been abundantly investigated, however, the effect of material on the load-carrying performance and energy absorption was seldom studied. In the current work, the auxetic structures fabricated using four materials including polyamide (PA), carbon fiber (CF) reinforced PA (PA/CF), polyether ether ketone (PEEK) and PEEK/CF were 3D-printed, and the compression performance and deformation behavior were compared and explored. The results showed that the deformation mode of auxetic structure were similar, which was not dependent on the material type. However, the compressive strength and modulus of the auxetic structure showed strong dependence on the material properties. Besides, PA and PA/CF auxetic structures displayed better rebound behavior after compression, which was perhaps attributed to the good resilience of PA resin. Therefore, mathematical equations were utilized to predict the compressive property based on the material parameters, showing a good agreement. On the other hand, the simulation of compression process was established and conducted, which confirmed the deformation process as experimental presented. The rebound behavior was further predicted by a loading-releasing cycle with different compression strains. Accordingly, the compression parameters showed great relations with material parameters but little effect on the deformation behavior.
更多
查看译文
关键词
Auxetic structures,3D printing,Compressive properties,Recovery,Thermoplastics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要