Bilirubin impairs neuritogenesis and synaptogenesis in NSPCs by downregulating NMDAR-CREB-BDNF signaling.

In vitro cellular & developmental biology. Animal(2024)

引用 0|浏览1
暂无评分
摘要
Neonatal jaundice is one of the most common disorders in the first 2 wk after birth. Unconjugated bilirubin (UCB) is neurotoxic and can cause neurological dysfunction; however, the underlying mechanisms remain unclear. Neurogenesis, neuronal growth, and synaptogenesis are exuberant in the early postnatal stage. In this study, the impact of UCB on neuritogenesis and synaptogenesis in the early postnatal stage was evaluated both in vitro and in vivo. Primary culture neuronal stem and progenitor cells (NSPCs) were treated with UCB during differentiation, and then the neurite length and synapse puncta were measured. In the bilirubin encephalopathy (BE) animal model, DCX+-marked developing neurons were used to detect apical length and dendritic arborization. According to the data, UCB significantly reduced neurite length and synapse density, as well as decreased the apical dendrite length and dendritic arborization. Furthermore, the NMDAR subunit NR2B was downregulated in NSPCs, while pCREB expression in the hippocampus progressively decreased during disease progression in the BE model. Next, we tested the expression of NR2B, pCREB, mBDNF, and p-mTOR in NSPCs in vitro, and found that UCB treatment reduced the expression of these proteins. In summary, this suggests that UCB causes chronic neurological impairment and is related to the inhibition of NMDAR-CREB-BDNF signaling in NSPCs, which is associated with reduced neuritogenesis and synaptogenesis. This finding may inspire the development of novel pharmaceuticals and treatments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要