The Diurnal Cycle of Rainfall and Deep Convective Clouds Around Sumatra and the Associated MJO-Induced Variability During Austral Summer in Himawari-8

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES(2023)

引用 0|浏览1
暂无评分
摘要
The effects of the diurnal cycle and large-scale atmospheric disturbances dominate rainfall and cloud variability in the Maritime Continent. This study examines the modulation of the Austral Summer diurnal cycle by the Madden-Julian Oscillation (MJO) using cloud populations through precipitation and deep convective cloud derived from satellite measurements. Using Rainfall Potential Areas from Himawari-8 Advanced Himawari Imager as a proxy for deep convection, our analysis shows that convective clouds are present similar to 55% of the time over land in Sumatra during the afternoon and night. Cloud signatures reveal semi-diurnal structures of deep convective clouds off the West Coast of Sumatra. In contrast, the East Coast exhibits explicit sea-ward propagation patterns of deep convective controlled by the coastal effects around the Strait of Malacca and Java Sea, together with the influence of synchronized diurnal forcing between islands. We show that the MJO drives the enhanced convective phases, changing the cloud top type distribution, moisture convergence, and moisture transport over the equatorial Indian Ocean. The cold cloud area also increases during the MJO active phases, which is linked to frequent deep convective cloud development near the mountain ranges of Sumatra and the adjacent ocean. The analyses of cloud variations based on the rainfall potential areas and cloud top type provide evidence of the effects of convective processes on the diurnal cycle of ice and water vapor distribution in the troposphere.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要