Fortifying Zinc Metal Anodes against Uncontrollable Side-Reactions and Dendrite Growth for Practical Aqueous Zinc Ion Batteries: A Novel Composition of Anti-Corrosive and Zn2+ Regulating Artificial Protective Layer

ADVANCED ENERGY MATERIALS(2023)

引用 0|浏览0
暂无评分
摘要
Aqueous zinc-ion batteries (AZIBs) have recently gained significant attention for grid-scale energy storage applications owing to their high intrinsic energy density, low cost, and environmental benignity. Nevertheless, uncontrolled Zn dendrite accumulation, H-2 gas generation, and inevitable corrosion resulting from intricate water-induced side-reactions remain the main hurdles to AZIB commercialization. To overcome these problems, it is imperative to develop easy-to-handle strategies for the construction of versatile artificial protective layers (APL) on Zn surfaces. Inspired by the suppressed HER and anti-corrosive properties of zinc silicate (Zn2SiO4), this study rationally designed a novel APL consisting of Zn2SiO4 nanospheres and decorated surface-modified carbon nanotube (CNT) to produce a stable and durable Zn anode (C-ZSL@Zn). The C-ZSL layer simultaneously improved Zn2+ transport kinetics and the Zn2+ de-solvation effect, maintained electrically insulating properties, and uniformized Zn2+ flux on the Zn surface, synergistically enabling corrosion-free and dendrite-free Zn plating/stripping behavior on C-ZSL@Zn. Consequently, the C-ZSL@Zn achieved prolonged lifespans of approximate to 1600 (at 1 mA cm(-2)) and approximate to 1100 h (at a high depth of discharge of approximate to 51.24%) with ultralow voltage hysteresis in symmetric cells, together with improved cycling stability for coin- and pouch-type Zn||alpha-MnO2 full-cells. This study creates a new avenue for constructing stable APL@Zn anodes for practical applications.
更多
查看译文
关键词
anti-corrosion,aqueous zinc ion batteries,artificial protective layer,zinc dendrites,zinc metal anodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要