All-atom molecular dynamics simulation of structure, dynamics and mechanics of elastomeric polymer materials in a wide range of pressure and temperature

MOLECULAR SYSTEMS DESIGN & ENGINEERING(2024)

引用 0|浏览0
暂无评分
摘要
Rubber materials possess remarkable properties, rendering them indispensable in numerous sectors including national defense, military industry, healthcare and automotive tire manufacturing. Consequently, they hold significant importance as engineering materials. This study employs all-atom molecular dynamics simulation to comprehensively investigate the static and dynamic characteristics of pure rubber systems, rubber/SiO2 nanocomposite systems and crosslinked rubber systems, focusing on natural rubber (NR), butadiene rubber (BR) and styrene-butadiene rubber (SBR) under varying pressure and temperature conditions. Our findings reveal a strongly positive correlation between the glass transition temperature (Tg) and pressure. It was observed that with every 100 atm increase in pressure, Tg experienced a rise of approximately 2-3 K. Moreover, the thermal expansion coefficient (TEC) of rubber systems in the glassy state is lower than that in the rubbery state and experiences reduction as pressure intensifies or with the introduction of SiO2 nanoparticles and crosslinking. Additionally, the study investigates the P-V-T relationship and bulk modulus of diverse rubber systems, establishing that elevated pressure or reduced temperature leads to an enhancement in the isothermal bulk modulus. Further, as temperature escalates or pressure diminishes, the mean square displacement (MSD) of all the rubber systems displays an upward trend, indicative of augmented molecular chain mobility. However, the incorporation of SiO2 nanoparticles or the implementation of crosslinking serves to impede the mobility of rubber chains. Evaluations of the mechanical properties of the rubber systems indicate that elevated temperature results in a reduction in the tensile strength. Notably, a comparison of the mechanical properties across different rubber systems demonstrates that NR exhibits the highest tensile strength, while BR exhibits the lowest. In conclusion, this work systematically explores the intricate interplay between the structure, dynamics and mechanics of distinct rubber materials induced by pressure and temperature, providing valuable theoretical guidance for the design and fabrication of rubber materials under extreme conditions. Static and dynamic performance of BR, NR and SBR in a wide range of temperature and pressure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要