Efficient N-to-M Checkpointing Algorithm for Finite Element Simulations

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
In this work, we introduce a new algorithm for N-to-M checkpointing in finite element simulations. This new algorithm allows efficient saving/loading of functions representing physical quantities associated with the mesh representing the physical domain. Specifically, the algorithm allows for using different numbers of parallel processes for saving and loading, allowing for restarting and post-processing on the process count appropriate to the given phase of the simulation and other conditions. For demonstration, we implemented this algorithm in PETSc, the Portable, Extensible Toolkit for Scientific Computation, and added a convenient high-level interface into Firedrake, a system for solving partial differential equations using finite element methods. We evaluated our new implementation by saving and loading data involving 8.2 billion finite element degrees of freedom using 8,192 parallel processes on ARCHER2, the UK National Supercomputing Service.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要