Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices

Jordan W. Davern, Luke Hipwood,Laura J. Bray,Christoph Meinert,Travis J. Klein

APL BIOENGINEERING(2024)

引用 0|浏览0
暂无评分
摘要
Extrusion-based bioprinting has gained widespread popularity in biofabrication due to its ability to assemble cells and biomaterials in precise patterns and form tissue-like constructs. To achieve this, bioinks must have rheological properties suitable for printing while maintaining cytocompatibility. However, many commonly used biomaterials do not meet the rheological requirements and therefore require modification for bioprinting applications. This study demonstrates the incorporation of Laponite-RD (LPN) into gelatin methacryloyl (GelMA) to produce highly customizable bioinks with desired rheological and mechanical properties for extrusion-based bioprinting. Bioink formulations were based on GelMA (5%-15% w/v) and LPN (0%-4% w/v), and a comprehensive rheological design was applied to evaluate key rheological properties necessary for extrusion-based bioprinting. The results showed that GelMA bioinks with LPN (1%-4% w/v) exhibited pronounced shear thinning and viscoelastic behavior, as well as improved thermal stability. Furthermore, a concentration window of 1%-2% (w/v) LPN to 5%-15% GelMA demonstrated enhanced rheological properties and printability required for extrusion-based bioprinting. Construct mechanical properties were highly tunable by varying polymer concentration and photocrosslinking parameters, with Young's moduli ranging from similar to 0.2 to 75 kPa. Interestingly, at higher Laponite concentrations, GelMA cross-linking was inhibited, resulting in softer hydrogels. High viability of MCF-7 breast cancer cells was maintained in both free-swelling droplets and printed hydrogels, and metabolically active spheroids formed over 7 days of culture in all conditions. In summary, the addition of 1%-2% (w/v) LPN to gelatin-based bioinks significantly enhanced rheological properties and retained cell viability and proliferation, suggesting its suitability for extrusion-based bioprinting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要