Control of the total orbital angular momentum of light beams propagating through a turbulent medium

Lingfei Xu, Zhichao Zhou, Xindi Ma,Olga Korotkova,Fei Wang

OPTICS LETTERS(2024)

引用 0|浏览1
暂无评分
摘要
The robustness of the orbital angular momentum (OAM) of light beams propagating in a turbulent medium, e.g., atmosphere, is critical for many applications such as OAM-based free-space optical communications and remote sensing. However, the total OAM of a beam interacting with the turbulent medium inevitably changes. Here, we demonstrate a practical algorithm to control the total OAM of a beam transmitted through a time-evolving, turbulent medium by dynamically modulating the weights of two coherently superimposed OAM modes, which served as the input beam. A cross-OAM matrix is introduced, and applied for checking whether the desired total OAM in the output plane can be achieved. Furthermore, analytical relations between the weights of two input modes and the output total OAM, as well as its modulation range, are established. As a numerical example, we study the behavior of total OAM of the two-mode beam after passing through a thermal convection occurring in an aqueous medium and suggest a possible application of our strategy. (c) 2024 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要