Adaptive foraging of pollinators fosters gradual tipping under resource competition and rapid environmental change

PLOS COMPUTATIONAL BIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Plant and pollinator communities are vital for transnational food chains. Like many natural systems, they are affected by global change: rapidly deteriorating conditions threaten their numbers. Previous theoretical studies identified the potential for community-wide collapse above critical levels of environmental stressors-so-called bifurcation-induced tipping points. Fortunately, even as conditions deteriorate, individuals have some adaptive capacity, potentially increasing the boundary for a safe operating space where changes in ecological processes are reversible. Our study considers this adaptive capacity of pollinators to resource availability and identifies a new threat to disturbed pollinator communities. We model the adaptive foraging of pollinators in changing environments. Pollinator's adaptive foraging alters the dynamical responses of species, to the advantage of some-typically generalists-and the disadvantage of others, with systematic non-linear and non-monotonic effects on the abundance of particular species. We show that, in addition to the extent of environmental stress, the pace of change of environmental stress can also lead to the early collapse of both adaptive and nonadaptive pollinator communities. Specifically, perturbed communities exhibit rate-induced tipping points at stress levels within the safe boundary defined for constant stressors. With adaptive foraging, tipping is a more asynchronous collapse of species compared to nonadaptive pollinator communities, meaning that not all pollinator species reach a tipping event simultaneously. These results suggest that it is essential to consider the adaptive capacity of pollinator communities for monitoring and conservation. Both the extent and the rate of stress change relative to the ability of communities to recover are critical environmental boundaries. Plant and pollinator communities, which support global food chains, are threatened. A significant problem is the reduction of pollination, where not enough plants are pollinated and are at risk of becoming extinct. Environmental change, such as climate change or increasing pesticide use, can cause this reduction. As long as these changes stay under certain boundaries, undesirable ecological processes like the reduction in pollination are reversible. Crossing these boundaries means tipping of pollinator communities might occur; the system might collapse. Pollinator communities can adapt, for instance, through adaptive foraging by changing which plants they prefer in response to environmental deterioration. We include adaptive foraging in a theoretical model of plant and pollinator communities. We show that plant and pollinator communities are vulnerable to the extent of stressors but also to how fast these stressors increase. Our model shows that, with adaptation, the extinction of species is more sequential and spreads out in time and may even temporarily favor especially generalist species.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要