Extreme Fuzzy Broad Learning System: Algorithm, Frequency Principle, and Applications in Classification and Regression

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS(2024)

引用 0|浏览19
暂无评分
摘要
As an effective alternative to deep neural networks, broad learning system (BLS) has attracted more attention due to its efficient and outstanding performance and shorter training process in classification and regression tasks. Nevertheless, the performance of BLS will not continue to increase, but even decrease, as the number of nodes reaches the saturation point and continues to increase. In addition, the previous research on neural networks usually ignored the reason for the good generalization of neural networks. To solve these problems, this article first proposes the Extreme Fuzzy BLS (E-FBLS), a novel cascaded fuzzy BLS, in which multiple fuzzy BLS blocks are grouped or cascaded together. Moreover, the original data is input to each FBLS block rather than the previous blocks. In addition, we use residual learning to illustrate the effectiveness of E-FBLS. From the frequency domain perspective, we also discover the existence of the frequency principle in E-FBLS, which can provide good interpretability for the generalization of the neural network. Experimental results on classical classification and regression datasets show that the accuracy of the proposed E-FBLS is superior to traditional BLS in handling classification and regression tasks. The accuracy improves when the number of blocks increases to some extent. Moreover, we verify the frequency principle of E-FBLS that E-FBLS can obtain the low-frequency components quickly, while the high-frequency components are gradually adjusted as the number of FBLS blocks increases.
更多
查看译文
关键词
Neural networks,Mathematical models,Feature extraction,Learning systems,Task analysis,Training,Stacking,Broad learning system (BLS),classification,deep neural network,frequency principle,fuzzy extreme learning machine (ELM),regression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要