Facile preparation of UiO-66-Lys/PAN nanofiber membrane by electrospinning for the removal of Co(II) from simulated radioactive wastewater.

The Science of the total environment(2024)

引用 0|浏览0
暂无评分
摘要
In this study, metal-organic framework (MOF) nanofiber membranes (NFMs) UiO-66-Lys/PAN were prepared by electrospinning using polyacrylonitrile (PAN) as the matrix, UiO-66-NH2 as the filler, and lysine (Lys) as the functional monomer. The membranes were subsequently employed to extract cobalt ions from simulated radioactive wastewater. The findings showed that the best performance of the membrane was obtained with a 3 % MOF content (3%UiO-66-Lys/PAN). Specifically, the pure water flux (PWF) of the 3 % UiO-66-Lys/PAN membrane reached 872 L m-2 h-1 with a cobalt ion retention of 45.4 %. In addition, adsorption experiments indicated that the NFMs had a theoretical maximum adsorption capacity of 41.4 mg/g for cobalt ions. The Langmuir isotherm model and the pseudo-second-order kinetic model were observed in the adsorption process, suggesting that the membrane material showed uniform adsorption of cobalt ions on a monolayer level, with an endothermic absorption process. XPS analysis confirmed that 3%UiO-66-Lys/PAN facilitated the adsorption of cobalt ions through a coordination effect, with the N and O atoms serving as coordinating atoms. Moreover, the material displayed excellent radiation stability even when exposed to doses ranging from 20 to 200 kGy. This study validated the stability of the MOF NFMs under real irradiation with radioactive nuclides (60Co) and demonstrated efficient cobalt ion separation. This study has important practical implications for the treatment and disposal of small volumes of 60Co-containing radioactive wastewater for engineering applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要