Quantum enhanced balanced heterodyne readout for differential interferometry

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, spectrally entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this paper, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty. Applying a high-frequency, spectrally entangled, two-mode squeezed state, we show further signal-to-noise improvement of an injected audio band signal of 3.5 dB. This technique is applicable for quantum-limited high-precision experiments, with application to searches for quantum gravity, gravitational wave detection and wavelength-multiplexed quantum communication.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要