Research on Energy Harvesting Mechanism and Low Power Technology in Wireless Sensor Networks

SENSORS(2024)

引用 0|浏览0
暂无评分
摘要
Wireless sensor networks (WSNs) are widely used in various fields such as military, industrial, and transportation for real-time monitoring, sensing, and data collection of different environments or objects. However, the development of WSNs is hindered by several limitations, including energy, storage space, computing power, and data transmission rate. Among these, the availability of power energy plays a crucial role as it directly determines the lifespan of WSN. To extend the life cycle of WSN, two key approaches are power supply improvement and energy conservation. Therefore, we propose an energy harvesting system and a low-energy-consumption mechanism for WSNs. Firstly, we delved into the energy harvesting technology of WSNs, explored the utilization of solar energy and mechanical vibration energy to ensure a continuous and dependable power supply to the sensor nodes, and analyzed the voltage output characteristics of bistable piezoelectric cantilever. Secondly, we proposed a neighbor discovery mechanism that utilizes a separation beacon, is based on reply to ACK, and can facilitate the identification of neighboring nodes. This mechanism operates at a certain duty cycle ratio, significantly reduces idle listening time and results in substantial energy savings. In comparison to the Disco and U-connect protocols, our proposed mechanism achieved a remarkable reduction of 66.67% and 75% in the worst discovery delay, respectively. Furthermore, we introduced a data fusion mechanism based on integer wavelet transform. This mechanism effectively eliminates data redundancy caused by spatiotemporal correlation, resulting in a data compression rate of 5.42. Additionally, it significantly reduces energy consumption associated with data transmission by the nodes.
更多
查看译文
关键词
wireless sensor networks,energy harvesting,neighbor discovery,data fusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要