Marine Toxins as Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View

MOLECULES(2024)

引用 0|浏览1
暂无评分
摘要
This work highlights the significant potential of marine toxins, particularly saxitoxin (STX) and its derivatives, in the exploration of novel pharmaceuticals. These toxins, produced by aquatic microorganisms and collected by bivalve mollusks and other filter-feeding organisms, offer a vast reservoir of chemical and biological diversity. They interact with sodium channels in physiological processes, affecting various functions in organisms. Exposure to these toxins can lead to symptoms ranging from tingling sensations to respiratory failure and cardiovascular shock, with STX being one of the most potent. The structural diversity of STX derivatives, categorized into carbamate, N-sulfocarbamoyl, decarbamoyl, and deoxydecarbamoyl toxins, offers potential for drug development. The research described in this work aimed to computationally characterize 18 STX derivatives, exploring their reactivity properties within marine sponges using conceptual density functional theory (CDFT) techniques. Additionally, their pharmacokinetic properties, bioavailability, and drug-likeness scores were assessed. The outcomes of this research were the chemical reactivity parameters calculated via CDFT as well as the estimated pharmacokinetic and ADME properties derived using computational tools. While they may not align directly, the integration of these distinct datasets enriches our comprehensive understanding of the compound's properties and potential applications. Thus, this study holds promise for uncovering new pharmaceutical candidates from the considered marine toxins.
更多
查看译文
关键词
marine toxins,saxitoxins,computational chemistry,conceptual DFT,chemical structures,chemical reactivity properties,bioavailability scores
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要