Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program

Ming-Yin Li,Chung-Feng Huang,Chao-Hung Hung,Chi-Ming Tai,Lein-Ray Mo,Hsing-Tao Kuo, Kuo-Chih Tseng,Ching-Chu Lo,Ming-Jong Bair,Szu-Jen Wang,Jee-Fu Huang, Ming-Lun Yeh,Chun-Ting Chen,Ming-Chang Tsai,Chien-Wei Huang, Pei-Lun Lee, Tzeng-Hue Yang,Yi-Hsiang Huang, Lee-Won Chong,Chien-Lin Chen,Chi-Chieh Yang,Sheng-Shun Yang,Pin-Nan Cheng, Tsai-Yuan Hsieh,Jui-Ting Hu,Wen-Chih Wu,Chien -Yu Cheng, Guei-Ying Chen, Guo-Xiong Zhou,Wei-Lun Tsai, Chien-Neng Kao,Chih-Lang Lin, Chia -Chi Wang,Ta-Ya Lin,Chih-Lin Lin, Wei -Wen Su,Tzong-Hsi Lee, Te-Sheng Chang,Chun-Jen Liu, Chia -Yen Dai,Jia-Horng Kao,Han-Chie Lin, Wan -Long Chuang,Cheng-Yuan Peng,Chun Wei-Tsai, Chi-Yi Chen,Ming-Lung Yu

CLINICAL AND MOLECULAR HEPATOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Background/Aims: Despite the high efficacy of direct -acting antivirals (DAAs), approximately 1-3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy. Methods: We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment. Results: The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, alpha-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset. Conclusions: Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure. (Clin Mol Hepatol 2024;30:64-79)
更多
查看译文
关键词
Hepatitis C virus,Antiviral agents,Artificial intelligence,Machine learning,Algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要