Variations of activity and community structure of nitrite-driven anaerobic methanotrophs in soils between native and invasive species in China's coastal wetlands

EUROPEAN JOURNAL OF SOIL BIOLOGY(2024)

引用 0|浏览13
暂无评分
摘要
Nitrite-driven anaerobic oxidation of methane (nitrite-driven AOM), mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera)-related bacteria, is a newly-discovered CH4 consumption process in coastal wetlands. Although Spartina alterniflora invasion significantly affects CH4 emissions from coastal wetlands, its impact on the nitrite-driven AOM process and the underlying mechanisms remain unknown. Here, we examined nitrite-driven AOM activity and M. oxyfera-related bacterial community in four coastal wetlands along the southeastern coast of China, under invasive Spartina alterniflora and native plants, including Kandelia candel, Avicennia marina or Phragmites australis. Linear mixed-effects models indicated that the Spartina alterniflora invasion stimulated the overall nitrite-driven AOM activity by an average of 61.5% in coastal wetlands (p < 0.05), but had no impact on the M. oxyfera-related bacterial abundance (p > 0.05). The nitrite-driven AOM activity was 7.1 times higher under Spartina alterniflora than under native species in Yueqing Bay (p < 0.05), and was 34.7%, 8.9% and 15.1% higher under Spartina alterniflora than under native species in Hengsha Island, Jiulong River and Zhanjiang, respectively (p > 0.05). Spartina alterniflora invasion increased the bacterial abundance in Yueqing Bay and Jiulong River Estuary by 6.8 and 7.6 times, respectively, while decreased the abundance by 34.4% and 51.4%, respectively, in Hengsha Island and Zhanjiang (p > 0.05). The partial least squares path model indicated an indirect impact of Spartina alterniflora invasion on the nitrite-driven AOM activity through its effect on soil properties, primarily including dissolved organic carbon content and nitrate content. The Spartina alterniflora invasion did not greatly alter M. oxyfera-related bacterial community. Overall, we shed new light on the potential impact of Spartina alterniflora invasion on CH4 cycling in coastal wetlands.
更多
查看译文
关键词
CH4 mitigation,Coastoal wetlands,Nitrite driven anaerobic methane oxidation,Spartina alterniflora invasion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要