Monitoring of laser-induced fast recrystallization in SS-316L through synchrotron X-ray diffraction

MATERIALS & DESIGN(2024)

引用 0|浏览0
暂无评分
摘要
Laser based heat treatments have multiple applications for local tuning of microstructures. They are particularly relevant in the context of laser-based additive manufacturing (LAM), in order to relieve residual stresses or introduce equiaxed structures through recrystallization. In 316L, high stored energy inherited from the high cooling rates of laser processing creates strong crystallographic textures and stable cellular walls, which challenges the possibility of inducing fast recrystallization. In a first step, we perform here a laser heat treatment on a highly deformed 316L steel, and show that in-situ X-ray Diffraction (XRD) is a viable tool for the monitoring of fast recrystallization. The evolution of Bragg peak width over time is connected to the evolution of dislocation density and grain size, thanks to Electron Back-Scattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM) characterization. X-ray signals are shown to reveal different stages of recrystallization, in particular the development of dislocation cells and the onset of nucleation. This study also demonstrates how local heat sources such as lasers may help designing composite-like materials for grain size, texture and hardness optimization.
更多
查看译文
关键词
Laser heat treatment (LHT),Recrystallization,In-situ X-ray diffraction,Monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要