Charged-current non-standard neutrino interactions at Daya Bay

Daya Bay collaboration,F. P. An, W. D. Bai,A. B. Balantekin, M. Bishai, S. Blyth,G. F. Cao, J. Cao,J. F. Chang, Y. Chang,H. S. Chen,H. Y. Chen, S. M. Chen,Y. Chen, Y. X. Chen,Z. Y. Chen,J. Cheng,Y. C. Cheng,Z. K. Cheng, J. J. Cherwinka, M. C. Chu,J. P. Cummings, O. Dalager, F. S. Deng, X. Y. Ding, Y. Y. Ding, M. V. Diwan, T. Dohnal, D. Dolzhikov, J. Dove, K. V. Dugas, H. Y. Duyang,D. A. Dwyer, J. P. Gallo, M. Gonchar, G. H. Gong, H. Gong, W. Q. Gu,J. Y. Guo,L. Guo, X. H. Guo,Y. H. Guo, Z. Guo,R. W. Hackenburg,Y. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung,B. Z. Hu, J. R. Hu, T. Hu,Z. J. Hu,H. X. Huang, J. H. Huang,X. T. Huang, Y. B. Huang, P. Huber, D. E. Jaffe, K. L. Jen, X. L. Ji, X. P. Ji,R. A. Johnson, D. Jones,L. Kang, S. H. Kettell, S. Kohn, M. Kramer, T. J. Langford, J. Lee, J. H. C. Lee, R. T. Lei,R. Leitner, J. K. C. Leung, F. Li, H. L. Li,J. J. Li, Q. J. Li, R. H. Li, S. Li, S. Li, S. C. Li,W. D. Li, X. N. Li,X. Q. Li, Y. F. Li, Z. B. Li,H. Liang, C. J. Lin, G. L. Lin, S. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn,J. C. Liu, J. L. Liu,J. X. Liu, C. Lu, H. Q. Lu, K. B. Luk, B. Z. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, R. C. Mandujano, C. Marshall, K. T. McDonald, R. D. McKeown, Y. Meng, J. Napolitano, D. Naumov, E. Naumova, T. M. T. Nguyen, J. P. Ochoa-Ricoux, A. Olshevskiy, J. Park, S. Patton, J. C. Peng, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, C. Morales Reveco, R. Rosero, B. Roskovec, X. C. Ruan, B. Russell, H. Steiner, J. L. Sun, T. Tmej, W. -H. Tse, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, J. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. H. Wei, W. Wei, L. J. Wen, K. Whisnant, C. G. White, H. L. H. Wong, E. Worcester, D. R. Wu, Q. Wu, W. J. Wu, D. M. Xia, Z. Q. Xie, Z. Z. Xing, H. K. Xu, J. L. Xu, T. Xu, T. Xue, C. G. Yang, L. Yang, Y. Z. Yang, H. F. Yao, M. Ye, M. Yeh, B. L. Young, H. Z. Yu, Z. Y. Yu, B. B. Yue, V. Zavadskyi, S. Zeng, Y. Zeng, L. Zhan, C. Zhang, F. Y. Zhang, H. H. Zhang, J. L. Zhang, J. W. Zhang, Q. M. Zhang, S. Q. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. Y. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, R. Z. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

arxiv(2024)

引用 0|浏览17
暂无评分
摘要
The full data set of the Daya Bay reactor neutrino experiment is used to probe the effect of the charged current non-standard interactions (CC-NSI) on neutrino oscillation experiments. Two different approaches are applied and constraints on the corresponding CC-NSI parameters are obtained with the neutrino flux taken from the Huber-Mueller model with a 5% uncertainty. Both approaches are performed with the analytical expressions of the effective survival probability valid up to all orders in the CC-NSI parameters. For the quantum mechanics-based approach (QM-NSI), the constraints on the CC-NSI parameters ϵ_eα and ϵ_eα^s are extracted with and without the assumption that the effects of the new physics are the same in the production and detection processes, respectively. The approach based on the effective field theory (EFT-NSI) deals with four types of CC-NSI represented by the parameters [ε_X]_eα. For both approaches, the results for the CC-NSI parameters are shown for cases with various fixed values of the CC-NSI and the Dirac CP-violating phases, and when they are allowed to vary freely. We find that constraints on the QM-NSI parameters ϵ_eα and ϵ_eα^s from the Daya Bay experiment alone can reach the order 𝒪(0.01) for the former and 𝒪(0.1) for the latter, while for EFT-NSI parameters [ε_X]_eα, we obtain 𝒪(0.1) for both cases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要