Chemical bonding effects in Sc compounds studied using X-ray absorption and X-ray photoelectron spectroscopies

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2024)

引用 0|浏览1
暂无评分
摘要
Advances on understanding the nature of the chemical bonding and electron correlation effects during the X-ray absorption process in ionic-covalent metal complexes has been achieved for most of the transition elements, except for scandium, due to the lack of a systematic series of spectroscopic reference spectra and the shortage of standard crystallographic data on scandium compounds. To close the gap, the chemical bonding effects in eight Sc compounds are studied using X-ray absorption spectroscopy (XAS) at Sc K and L2,3 absorption edges and X-ray photoelectron spectroscopy (XPS). Indeed, the fine structure of the XAS Sc K edge reflects the chemical sp3-like bond formed between scandium and the ligand while the L2,3 edge and the pre-edge features of the K-edge provide a direct insight into the crystal field parameters at the Sc site in the coordination compound. The XPS data provide the information on binding energies of the core electrons involved in the electron transitions caused by the absorption of high energy X-rays. XAS and XPS complement each other by accessing the information on Sc structure on bulk and the surface. Herein, comprehensive information on the electronic structure of well-known crystalline materials based on Sc is given with spectroscopic fingerprints X-ray data. This will help to predict the formation of chemical bonds in the unknown components via the systematic evaluation of the available spectroscopic fingerprints. To understand the nature of the chemical bonding and electron correlation effects eight Sc compounds are systematically studied using the X-ray absorption spectroscopy at K and L2,3 absorption edges and X-ray photoelectron spectroscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要