Pontryagin Neural Operator for Solving Parametric General-Sum Differential Games

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
The values of two-player general-sum differential games are viscosity solutions to Hamilton-Jacobi-Isaacs (HJI) equations. Value and policy approximations for such games suffer from the curse of dimensionality (CoD). Alleviating CoD through physics-informed neural networks (PINN) encounters convergence issues when value discontinuity is present due to state constraints. On top of these challenges, it is often necessary to learn generalizable values and policies across a parametric space of games, e.g., for game parameter inference when information is incomplete. To address these challenges, we propose in this paper a Pontryagin-mode neural operator that outperforms existing state-of-the-art (SOTA) on safety performance across games with parametric state constraints. Our key contribution is the introduction of a costate loss defined on the discrepancy between forward and backward costate rollouts, which are computationally cheap. We show that the discontinuity of costate dynamics (in the presence of state constraints) effectively enables the learning of discontinuous values, without requiring manually supervised data as suggested by the current SOTA. More importantly, we show that the close relationship between costates and policies makes the former critical in learning feedback control policies with generalizable safety performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要