Uncovering the dominant role of root lignin accumulation in silicon-induced resistance to drought in tomato.

Jiaqi Xie, Bili Cao,Kun Xu

International journal of biological macromolecules(2023)

引用 0|浏览1
暂无评分
摘要
The role of lignin accumulation in silicon-induced resistance has not been fully elucidated. Based on the finding that the root cell wall is protected by silicon, this study explored the role of lignin accumulation in silicon-induced drought resistance in tomato. The decreased silicon concentration of the root confirmed the dominant role of lignin accumulation in silicon-induced drought resistance. The lignin monomer content in the root was enhanced by silicon, and was accompanied by the enhancement of drought resistance. Histochemical and transcriptional analyses of lignin showed that lignin accumulation was promoted by silicon under drought stress. In addition, in the root zone, silicon-induced lignin accumulation increased as the distance from the root tip increased under drought stress. Surprisingly, the Dwarf gene was upregulated by silicon in the roots. Micro Tom Dwarf gene mutation and Micro Tom-d + Dwarf gene functional complementation were further used to confirm that Dwarf regulates the spatial accuracy of SHR expression in the root. Therefore, root lignin accumulation plays a dominant role in silicon-induced drought resistance in tomato and the regulation of spatial accuracy of root lignification by silicon under drought stress is through the BR pathway, thereby avoiding the inhibition of root growth caused by root lignification.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要