Wastewater treatment with microalgal-bacterial aggregates: The tradeoff between energy savings and footprint requirements

Charles R. Hammond,Frank J. Loge

BIORESOURCE TECHNOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Microalgal-bacterial aggregates (MBAs) have recently attracted significant attention as a potential replacement for conventional, suspended-growth wastewater treatment processes. This article evaluates MBAs for full-scale implementation from the perspective of oxygen supply, land use, and energy savings. The results suggest that under ideal conditions, photosynthesis and atmospheric diffusion would provide at most only 2.7% of the oxygen demand in a conventionally designed, nitrifying activated sludge process, which is equivalent to approximately 1.5% of typical treatment plant-wide energy requirements. The results also suggest that a wastewater treatment process using MBAs and relying on solar photosynthesis and atmospheric diffusion for oxygen would have nearly the same footprint as an equivalent well-mixed wastewater treatment pond. While photosynthesis and passive atmospheric diffusion are capable of providing significant oxygen for suspended-growth wastewater treatment processes, the tradeoffs between footprint requirements and energy savings should be carefully considered.
更多
查看译文
关键词
Granular sludge,Flocs,Oxygenic photogranules,Cyanobacteria,Photosynthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要