Facile Synthesis of Pre-Lithiated LiTiO2 Nanoparticles for Quick Charge and Long Lifespan Anode in Lithium-Ion Batteries

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 0|浏览12
暂无评分
摘要
Titanium dioxide (TiO2) has been widely used as an alternative anodic material for lithium-ion batteries (LIBs) due to its ultrahigh capacity retention and long cycle lifespan. However, the restriction of lithium insertion, intrinsically poor electronic conductivity, and sluggish lithium ionic kinetics of bulk TiO2 hinder their specific capacity and rate performance. Herein, LiTiO2 nanoparticles (NPs) are synthesized via a facile ball milling method by the reaction of anatase TiO2 with LiH. The as-prepared LiTiO2 NPs have strong structural stability and a "zero strain" effect during the repeated intercalation/deintercalation, even at low potential. As anodic materials for LIBs, LiTiO2 NPs exhibit a superior rate performance of similar to 100 mA h g(-1) at 10C (3350 mA g(-1)) with a capacity retention of 100% after 1000 cycles, which is 5 times higher than that of the original commercial anatase TiO2 powder. The higher specific capacity of LiTiO2 NPs is attributed to the increased conversion of Ti3+ to Ti2+ on the porous surface of LiTiO2 NPs, which provides a more capacitive contribution. This study not only provides a new fabrication approach toward Ti-based anodes for ultrafast LIBs but also underscores the potential importance of embedding lithium into transition metal oxides as a strategy for boosting their electrochemical performance.
更多
查看译文
关键词
LiTiO2,TiO2,prelithiation,pseudocapacitive,lithium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要