Development of hydrogel-based standards and phantoms for non-linear imaging at depth

JOURNAL OF BIOMEDICAL OPTICS(2023)

引用 0|浏览5
暂无评分
摘要
Significance: Rapid advances in medical imaging technology, particularly the development of optical systems with non-linear imaging modalities, are boosting deep tissue imaging. The development of reliable standards and phantoms is critical for validation and optimization of these cutting-edge imaging techniques. Aim: We aim to design and fabricate flexible, multi-layered hydrogel-based optical standards and evaluate advanced optical imaging techniques at depth. Approach: Standards were made using a robust double-network hydrogel matrix consisting of agarose and polyacrylamide. The materials generated ranged from single layers to more complex constructs consisting of up to seven layers, with modality-specific markers embedded between the layers. Results: These standards proved useful in the determination of the axial scaling factor for light microscopy and allowed for depth evaluation for different imaging modalities (conventional one-photon excitation fluorescence imaging, two-photon excitation fluorescence imaging, second harmonic generation imaging, and coherent anti-Stokes Raman scattering) achieving actual depths of 1550, 1550, 1240, and 1240 mu m, respectively. Once fabricated, the phantoms were found to be stable for many months. Conclusions: The ability to image at depth, the phantom's robustness and flexible layered structure, and the ready incorporation of "optical markers" make these ideal depth standards for the validation of a variety of imaging modalities. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
更多
查看译文
关键词
standards,phantoms,non-linear imaging,hydrogel,depth imaging,axial scaling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要