Holographic Nano-Imaging of Terahertz Dirac Plasmon Polaritons Topological Insulator Antenna Resonators

SMALL(2023)

引用 0|浏览3
暂无评分
摘要
Excitation of Dirac plasmon polaritons (DPPs) in bi-dimensional materials have attracted considerable interest in recent years, both from perspectives of understanding their physics and exploring their transformative potential for nanophotonic devices, including ultra-sensitive plasmonic sensors, ultrafast saturable absorbers, modulators, and switches. Topological insulators (TIs) represent an ideal technological platform in this respect because they can support plasmon polaritons formed by Dirac carriers in the topological surface states. Tracing propagation of DPPs is a very challenging task, particularly at terahertz (THz) frequencies, where the DPP wavelength becomes over one order of magnitude shorter than the free space photon wavelength. Furthermore, severe attenuation hinders the comprehensive analysis of their characteristics. Here, the properties of DPPs in real TI-based devices are revealed. Bi2Se3 rectangular antennas can efficiently confine the propagation of DPPs to a single dimension and, as a result, enhance the DPPs visibility despite the strong intrinsic attenuation. The plasmon dispersion and loss properties from plasmon profiles are experimentally determined, along the antennas, obtained using holographic near-field nano-imaging in a wide range of THz frequencies, from 2.05 to 4.3 THz. The detailed investigation of the unveiled DPP properties can guide the design of novel topological quantum devices exploiting their directional propagation. It is demonstrated that Bi2Se3 rectangular antennas can efficiently confine the propagation of Dirac plasmon polaritons to a single dimension. Plasmon dispersion and loss properties from plasmon profiles are experimentally determined along the antennas by means of holographic near-field nano-imaging in a wide range of THz frequencies, from 2.05 to 4.3 THz.image
更多
查看译文
关键词
large area topological insulators,MBE,near field,plasmon polaritons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要