Solute carrier family 35 member A2 regulates mitophagy through the PI3K/ AKT/mTOR axis, promoting the proliferation, migration, and invasion of osteosarcoma cells

Xiaohui Luo,Jiongfeng Zhang, Chong Guo, Ning Jiang,Feifei Zhang, Quahui Jiao,Kai Xu,Jun Yang,Gaoyang Qu,Xiao-Bin Lv, Zhiping Zhang

GENE(2024)

引用 0|浏览0
暂无评分
摘要
The treatment of osteosarcoma patients exhibits individual variability, underscoring the critical importance of targeted therapy. Although (Solute carrier family 35 member A2) SLC35A2 ' s role in the progression of various cancers has been extensively investigated, its specific implications in osteosarcoma remain unexplored. Leveraging data from the (The Cancer Genome Atlas) TCGA and (Genotype-Tissue Expression) GTEx databases, we have discerned that SLC35A2 is notably upregulated in osteosarcoma and correlates with the prognosis of osteosarcoma patients. Consequently, it becomes imperative to delve into the role of SLC35A2 in the context of osteosarcoma. Our research substantiates that SLC35A2 exerts a notable influence on mitochondrial autophagy in osteosarcoma, thereby exerting cascading effects on the proliferation, migration, invasion, and apoptosis of osteosarcoma cells. Mechanistically, SLC35A2 orchestrates mitochondrial autophagy via the PI3K/AKT/mTOR signaling pathway. Moreover, we have conducted rigorous animal experiments to further corroborate the repercussions of SLC35A2 on osteosarcoma growth. In summation, our study elucidates that SLC35A2 ' s modulation of mitochondrial autophagy through the PI3K/AKT/mTOR signaling pathway constitutes a pivotal factor in the malignant progression of osteosarcoma, unveiling promising therapeutic targets for patients grappling with this condition.
更多
查看译文
关键词
Osteosarcoma,Mitophagy,PI3K/AKT/mTOR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要