A high rain-erosion resistant bio-based nanogel with continuous immunity induction for plant virus inhibition

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览4
暂无评分
摘要
Tobacco mosaic virus (TMV) is the most widely spread and harmful virus in the world, causing serious economic losses annually. However, the low anti-erosion ability of the pesticides for TMV management make it easy to be washed by the rain, which makes the effective duration of the pesticides shorter. In this paper, a new bio-based nanogel with superior antiviral activity was reported, and its slow-release behavior, rain erosion resistance and the antiviral mechanism was systematically studied. The results determined that the nanogels (Zn2+@ALGNP and Zn2+@ALGNP@PL) exhibited sustained releasing of Zn2+ with a 7 days duration, and the epsilon-PL coating could enhance the releasing rate of Zn2+. Moreover, Zn2+@ALGNP@PL displayed a lower contact angle, indicating greater adhesion to the leaf surface, and in consequence imposed better resistance to simulate rain erosion than pure Zn2+. Strikingly, Zn2+@ALGNP@PL could inhibit plant virus infection by aggregating the virions and reducing its coat protein stability, as well as inducing the efficient expression of reactive oxygen species, antioxidant enzymes and resistance genes to enhance plant resistance and promote plant growth. Overall, this study had successfully developed a high rain-erosion resistant bio-based nanogel capable of continue to induce resistant plants and promote plant growth.
更多
查看译文
关键词
Nanogel,Foliar adhesion,Antiviral
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要