An Experimental Study ofthe Physio-Mechanicaland Microstructural Performances of Escherichia Coli Bacteria-Based Bio-Concrete

Sudipto Nath Priyom,Md. Moinul Islam, Md. Saiful Islam,Md. Asifur Rahman, Md. Fahad Shahriar Zawad,Wahhida Shumi

International Journal of Sustainable Construction Engineering and Technology(2023)

引用 0|浏览1
暂无评分
摘要
A balanced mixture of cement, sand, stone or brick chips, and water is carefully allowed to form concrete, a man-made building material. These elements can be adjusted appropriately to produce concrete with a variety of qualities. Although concrete may endure compressive forces, like natural stone, tensile forces can cause it to crack. As a result, crack formation is afrequentoccurrence in concrete, allowing various foreign chemicals and water to enter the structures and shortening their life span. The likelihood of cracking grows with time due to variations in humidity and temperature. It can be exceedingly expensive to maintain or repair concrete construction items. The use of bio-concrete for the construction of durable structures has shown to be quite advantageous in this perspective. It is beneficial for improving the properties of concrete as well as lowering maintenance costs. In this investigation, concrete samples measuring 100×100×100 mm weremade and periodically tested for compressive and split tensile strength testing. Following a 28-day curing period, the concrete treated with Escherichia coli bacteria had compressive and split tensile strengths that were 10% and 23% higher than identical bacteria-free. The non-destructive test on cylindrical samples was then conducted to evaluate the material qualities. The mortar samples of crystalline structures were also validated by SEM examination. In order to properly and reliably anticipate the strength of concrete, the RSM model was also formulated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要