In Vitro Maturation, In Vitro Oogenesis, and Ovarian Longevity

Reproductive Sciences(2023)

引用 0|浏览0
暂无评分
摘要
This paper will review a remarkable new approach to in vitro maturation “IVM” of oocytes from ovarian tissue, based on our results with in vitro oogenesis from somatic cells. As an aside benefit we also have derived a better understanding of ovarian longevity from ovary transplant. We have found that primordial follicle recruitment is triggered by tissue pressure gradients. Increased pressure holds the follicle in meiotic arrest and prevents recruitment. Therefore recruitment occurs first in the least dense inner tissue of the cortico-medullary junction. Many oocytes can be obtained from human ovarian tissue and mature to metaphase 2 in vitro with no need for ovarian stimulation. Ovarian stimulation may only be necessary for removing the oocyte from the ovary, but this can also be accomplished by simple dissection at the time of ovary tissue cryopreservation. By using surgical dissection of the removed ovary, rather than a needle stick, we can obtain many oocytes from very small follicles not visible with ultrasound. A clearer understanding of ovarian function has come from in vitro oogenesis experiments, and that explains why IVM has now become so simple and robust. Tissue pressure (and just a few “core genes” in the mouse) direct primordial follicle recruitment and development to mature oocyte, and therefore also control ovarian longevity. There are three distinct phases to oocyte development both in vitro and in vivo: in vitro differentiation “IVD” which is not gonadotropin sensitive (the longest phase), in vitro gonadotropin sensitivity “IVG” which is the phase of gonadotropin stimulation to prepare for meiotic competence, and IVM to metaphase II. On any given day 35% of GVs in ovarian tissue have already undergone “IVD” and “IVG” in vivo, and therefore are ready for IVM.
更多
查看译文
关键词
Cancer and Fertility,In-Vitro Oocyte Maturation,Ovary Tissue Cryopreservation,Ovary Transplantation,Primordial Follicle Recruitment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要