The piezoelectric response of electrospun PVDF/PZT incorporated with pristine graphene nanoplatelets for mechanical energy harvesting

Journal of Materials Science: Materials in Electronics(2024)

引用 0|浏览0
暂无评分
摘要
Flexible nanogenerators based on electrospun piezoelectric polyvinylidene fluoride (PVDF)/lead zirconium titanate (PZT) incorporated with unmodified graphene nanoplatelets (GNP) were fabricated via the electrospinning method. The microstructural and phase characterizations demonstrated a continuous and homogeneous fiber-shaped composite structure with good interfacial interaction between the GNP and the PVDF/PZT matrix. It was found that the diameter of the PVDF/PZT fibers was on average 270 nm, while the PVDF/PZT/GNP fiber with GNP content of 1.5wt.% had a diameter of approximately 236 nm. The piezoelectric performance evaluations of all nanogenerator devices indicated that the PVDF/PZT/GNP with GNP content of 1.5wt.% nanogenerator had an almost 6 times higher electrical output (8.68 µW) compared to that of the PVDF/PZT-based nanogenerator (1.51 µW) at 20 Hz within the same resistance of 2.5 MΩ. Considering its simple and low-cost fabrication technology, high performance, and stable electrical power efficiency, the introduced flexible nanogenerator based on the PVDF/PZT/GNP offers a promising capability of powering portable and wearable electronics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要