Novel Transformation Deep Learning Model for Electrocardiogram Classification and Arrhythmia Detection using Edge Computing

Journal of Grid Computing(2023)

引用 0|浏览0
暂无评分
摘要
The diagnosis of the cardiovascular disease relies heavily on the automated classification of electrocardiograms (ECG) for arrhythmia monitoring, which is often performed using machine learning (ML) algorithms. However, current ML algorithms are typically deployed using cloud-based inferences, which may not meet the reliability and security requirements for ECG monitoring. A newer solution, edge inference, has been developed to address speed, security, connection, and reliability issues. This paper presents an edge-based algorithm that combines continuous wavelet transform (CWT), and short-time Fourier transform (STFT), in a hybrid convolutional neural network (CNN) and Long Short-Term Memory (LSTM) model techniques for real-time ECG classification and arrhythmia detection. The algorithm incorporates an STFT CWT-based 1D convolutional (Conv1D) layer as a Finite Impulse Response (FIR) filter to generate the spectrogram of the input ECG signal. The output feature maps from the Conv1D layer are then reshaped into a 2D heart map image and fed into a hybrid convolutional neural network (2D-CNN) and Long Short-Term Memory (LSTM) classification model. The MIT-BIH arrhythmia database is used to train and evaluate the model. Using a cloud platform, four model versions are learned, considered, and optimized for edge computing on a Raspberry Pi device. Techniques such as weight quantization and pruning enhance the algorithms created for edge inference. The proposed classifiers can operate with a total target size of 90 KB, an overall inference time of 9 ms, and higher memory use of 12 MB while achieving up to 99.6
更多
查看译文
关键词
Electrocardiogram,Machine learning,Edge inference,Convolutional neural network,Interpretable neural network,Finite impulse response,Short-time Fourier transform
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要