Structure-preserving Kernel-based methods for solving dissipative PDEs on surfaces

CoRR(2023)

引用 0|浏览2
暂无评分
摘要
In this paper, we propose a general meshless structure-preserving Galerkin method for solving dissipative PDEs on surfaces. By posing the PDE in the variational formulation and simulating the solution in the finite-dimensional approximation space spanned by (local) Lagrange functions generated with positive definite kernels, we obtain a semi-discrete Galerkin equation that inherits the energy dissipation property. The fully-discrete structure-preserving scheme is derived with the average vector field method. We provide a convergence analysis of the proposed method for the Allen-Cahn equation. The numerical experiments also verify the theoretical analysis including the convergence order and structure-preserving properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要