Predictive Multi-Agent-Based Planning and Landing Controller for Reactive Dual-Arm Manipulation

IEEE TRANSACTIONS ON ROBOTICS(2024)

引用 0|浏览1
暂无评分
摘要
Future robots operating in fast-changing anthropomorphic environments need to be reactive, safe, flexible, and intuitively use both arms (comparable to humans) to handle task-space constrained manipulation scenarios. Furthermore, dynamic environments pose additional challenges for motion planning due to a continual requirement for validation and refinement of plans. This work addresses the issues with vector-field-based motion generation strategies, which are often prone to local-minima problems. We aim to bridge the gap between reactive solutions, global planning, and constrained cooperative (two-arm) manipulation in partially known surroundings. To this end, we introduce novel planning and real-time control strategies leveraging the geometry of the task space that are inherently coupled for seamless operation in dynamic scenarios. Our integrated multiagent global planning and control scheme explores controllable sets in the previously introduced cooperative dual task space and flexibly controls them by exploiting the redundancy of the high degree-of-freedom (DOF) system. The planning and control framework is extensively validated in complex, cluttered, and nonstationary simulation scenarios where our framework is able to complete constrained tasks in a reliable manner, whereas existing solutions fail. We also perform additional real-world experiments with a two-armed 14 DOF torque-controlled KoBo robot. Our rigorous simulation studies and real-world experiments reinforce the claim that the framework is able to run robustly within the inner loop of modern collaborative robots with vision feedback.
更多
查看译文
关键词
Task analysis,Robots,Planning,Robot kinematics,Collision avoidance,Jacobian matrices,Trajectory,dual-arm manipulation,motion and path planning,reactive and sensor-based planning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要