Indentation mechanics and native collagen content in the cartilaginous endplate: A comparison between porcine cervical and human lumbar spines

Journal of the Mechanical Behavior of Biomedical Materials(2024)

引用 0|浏览1
暂无评分
摘要
This study characterized the regional indentation mechanics and native collagen content in cartilaginous endplates (CEPs) from the porcine cervical spine, young human lumbar spine, and aged human lumbar spine. Seventeen endplates were included in this study: six porcine cervical, nine young human lumbar, and two aged human lumbar. Width and depth measurements were obtained using a digital caliper and used to size-normalize and identify the central, anterior, posterior, and lateral regions. Regional microindentation tests were performed using a serial robot, where surface locations were loaded/unloaded at 0.1 mm/s and held at a constant 10 N force for 30 s. Loading stiffness and creep displacement were obtained from force-displacement data. Immunofluorescence staining for type I and type II collagen was subsequently performed on sagittal sections of all endplate regions. 255 images were obtained from which fluorescence intensity, sub-surface void area, and cartilage thickness were measured. CEPs from the young human lumbar spine were, on average, 27% more compliant, 0.891 mm thicker, had a lower fluorescence intensity for native collagen proteins within the cartilage (−58%) and subchondral bone (−24%), and had a sub-surface void area that was 19.7 times greater than porcine cervical CEPs. Compared to aged human lumbar CEPs, young human lumbar CEPs were 57% stiffer, 0.568 mm thicker, had a higher fluorescence intensity for native collagen proteins within the cartilage (+30%) and subchondral bone (+46%), and had a sub-surface void area that was 10.6 times smaller. Although not a perfect mechanical and structural surrogate, porcine cervical CEPs provided initial conditions that may be more representative of the young and healthy human lumbar spine compared to aged human cadaveric specimens. The indentation properties presented may have further applications to finite element models of the human lumbar spine.
更多
查看译文
关键词
Human lumbar,Porcine cervical,Endplate,Indentation,Collagen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要