Theoretical Study on the Structures and Stabilities of CunZn3O3 (n=1-4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms

Zhi-Wei Tao, Han-Yi Zou,Hong-Hui Li,Bin Wang,Wen-Jie Chen

INORGANICS(2024)

引用 0|浏览0
暂无评分
摘要
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1-4). The structural evolution of CunZn3O3 (n = 1-4) clusters may reveal the aggregation behavior of Cu atoms on the Zn3O3 cluster. The planar seven-membered ring of the CuZn3O3 cluster plays an important role in the structural evolution; that is, the Cu atom, Cu dimer (Cu-2) and Cu trimer (Cu-3) anchor on the CuZn3O3 cluster. Additionally, it is found that CunZn3O3 clusters become more stable as the Cu content (n) increases. Bader charge analysis points out that with the doping of Cu atoms, the reducibility of Cu aggregation (Cun-1) on the CuZn3O3 cluster increases. Combined with the d-band centers and the surface electrostatic potential (ESP), the reactivity and the possible reaction sites of CunZn3O3 (n = 1-4) clusters are also illustrated.
更多
查看译文
关键词
copper-doped zinc oxide clusters,density functional theory,structural evolution,reactivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要