Identification of open-pit mines and surrounding vegetation on high-resolution satellite images based on improved bilateral segmentation network semantic segmentation model

JOURNAL OF APPLIED REMOTE SENSING(2023)

引用 0|浏览7
暂无评分
摘要
Timely monitoring and evaluation of ecological restoration in mining areas is crucial. Based on remote sensing data and deep-learning models, the dynamic changes of bare rock area and vegetation in open-pit mine can be quantitatively monitored and analyzed. Current mining area feature extraction algorithms are limited by single-scale approaches and insufficient information fusion, resulting in low recognition rates. To address this, we proposed an improved Bilateral Segmentation Network (BiSeNetV2) semantic segmentation model (BiSeNetV2 + MSFE + SegHead, BMS), which combines multiscale feature extraction (MSFE) module and segmentation head (SegHead) structures. We utilized BMS model to conduct research on the classification and change monitoring of vegetation areas and mining areas. Our results demonstrated that the accuracy evaluation indicators aAcc, mAcc, and MIoU of the BMS model were better than those of the BiSeNetV2 model, with improvements of 3.5%, 5.5%, and 7.9%, respectively. Meanwhile, compared to the short-term dense concatenate and Twins-PCPVT deep-learning models, the BMS model improved aAcc, mAcc, and MIoU by 3.4%, 8.0%, and 7.3% and 4.4%, 1.1%, and 8.6%, respectively. Accurate and efficient research on ground object classification methods enables quantitative evaluation of mining area environment recovery, providing crucial technical support for ecological monitoring, planning, and governance.
更多
查看译文
关键词
object classification,Gaofen-1,BMS model,multiscale features,dynamic change monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要