NeuroRIS: Neuromorphic-Inspired Metasurfaces

CoRR(2023)

引用 0|浏览2
暂无评分
摘要
Reconfigurable intelligent surfaces (RISs) operate similarly to electromagnetic (EM) mirrors and remarkably go beyond Snell law to generate an applicable EM environment allowing for flexible adaptation and fostering sustainability in terms of economic deployment and energy efficiency. However, the conventional RIS is controlled through high-latency field programmable gate array or micro-controller circuits usually implementing artificial neural networks (ANNs) for tuning the RIS phase array that have also very high energy requirements. Most importantly, conventional RIS are unable to function under realistic scenarios i.e, high-mobility/low-end user equipment (UE). In this paper, we benefit from the advanced computing power of neuromorphic processors and design a new type of RIS named \emph{NeuroRIS}, to supporting high mobility UEs through real time adaptation to the ever-changing wireless channel conditions. To this end, the neuromorphic processing unit tunes all the RIS meta-elements in the orders of $\rm{ns}$ for particular switching circuits e.g., varactors while exhibiting significantly low energy requirements since it is based on event-driven processing through spiking neural networks for accurate and efficient phase-shift vector design. Numerical results show that the NeuroRIS achieves very close rate performance to a conventional RIS-based on ANNs, while requiring significantly reduced energy consumption with the latter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要