Particle transport during asymmetric net-zero cyclic fluid flow: Flow in tubes and radial flow in fractures

POWDER TECHNOLOGY(2024)

引用 0|浏览2
暂无评分
摘要
Cyclic fluid flow enhances transport in porous media. We study particle transport during asymmetric net-zero cyclic fluid flow where the fluid injection rate is higher than the withdrawal rate. Inside a tube, the threshold fluid velocity required to mobilize a particle depends on the relative particle size: larger particles obstruct flow more effectively than small particles and require a smaller velocity to be transported. Then, flow rates can be selected so particles move forward during the injection phase and remain stationary during withdrawal. Similarly, asymmetric cyclic fluid flow transports particles radially along fractures despite the net-zero fluid flow. The flow velocity decreases away from the injection point and particles migrate to a characteristic "terminal radial distance". Unlike tube flow, a grain has a diminishing obstructing effect on the radial flow field, and the threshold flow rate required to mobilize grains increases with increasing particle size during radial flow.
更多
查看译文
关键词
Particle-laden fluid flow,Cyclic fluid flow,Fines migration,Proppants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要