Realizing high-performance glucose sensing in sweat: Synergistic use of nickel oxide nanosheets as photoelectrodes and the masking effect of Mo-POM for photoelectrochemical detection

SENSORS AND ACTUATORS B-CHEMICAL(2024)

引用 0|浏览5
暂无评分
摘要
The detection of blood glucose plays a crucial role in clinical practice, and the innovative use of sweat as a substitute for blood has brought significant practical value in the detection of blood glucose. However, lactic acid (LA) has been found to be the main interfering substance on the detection of glucose in sweat. In this study, a photoelectrochemical sensing system was constructed by using NiO nanosheets as photosensitive materials and molybdenum-based polyoxometalate clusters (Mo-POM) as masking agents. Mo-POM, an ideal electroncapturing agent, effectively promoted the spatial separation of photo-generated charge carriers in NiO nanosheets, thereby enhancing the oxidation rate of glucose on the valence band of NiO and significantly improving the detection sensitivity. Mo-POM also exhibited the characteristics of an electron sponge, facilitating fast and reversible multi-electron transfer reactions and effectively masking certain redox substances, especially lactic acid, thus greatly enhancing the selectivity of the glucose sensor. The photoelectrochemical (PEC) sensor constructed using Mo-POM has excellent sensing capability with high sensitivity to detect glucose at a minimum concentration of 1 nM. The detection limit of the sensor is 0.33 nM (S/N = 3). This sensor can be reliably applied to the detection of glucose in sweat and the accuracy of the results was verified by gas chromatography-mass spectrometry.
更多
查看译文
关键词
Photoelectrochemical sensor,NiO nanosheets,Mo-POM,Glucose,Lactic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要