Identification of FDA-approved drugs that increase mevalonate kinase in hyper IgD syndrome

Frouwkje A. Politiek, Marjolein Turkenburg,Janet Koster, Rob Ofman,Hans R. Waterham

JOURNAL OF INHERITED METABOLIC DISEASE(2024)

引用 0|浏览2
暂无评分
摘要
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder caused by bi-allelic loss-of-function variants in the MVK gene, resulting in decreased activity of the encoded mevalonate kinase (MK). Clinical presentation ranges from the severe early-lethal mevalonic aciduria to the milder hyper-IgD syndrome (MKD-HIDS), and is in the majority of patients associated with recurrent inflammatory episodes with often unclear cause. Previous studies with MKD-HIDS patient cells indicated that increased temperature, as caused by fever during an inflammatory episode, lowers the residual MK activity, which causes a temporary shortage of non-sterol isoprenoids that promotes the further development of inflammation. Because an increase of the residual MK activity is expected to make MKD-HIDS patients less sensitive to developing inflammatory episodes, we established a cell-based screen that can be used to identify compounds and/or therapeutic targets that promote this increase. Using a reporter HeLa cell line that stably expresses the most common MKD-HIDS variant, MK-V377I, C-terminally tagged with bioluminescent NanoLuc luciferase (nLuc), we screened the Prestwick Chemical Library (R), which includes 1280 FDA-approved compounds. Multiple compounds increased MK-V377I-nLuc bioluminescence, including steroids (i.e., glucocorticoids, estrogens, and progestogens), statins and antineoplastic drugs. The glucocorticoids increased MK-V377I-nLuc bioluminescence through glucocorticoid receptor signaling. Subsequent studies in MKD-HIDS patient cells showed that the potent glucocorticoid clobetasol propionate increases gene transcription of MVK and other genes regulated by the transcription factor sterol regulatory element-binding protein 2 (SREBP-2). Our results suggest that increasing the flux through the isoprenoid biosynthesis pathway by targeting the glucocorticoid receptor or SREBP-2 could be a potential therapeutic strategy in MKD-HIDS.
更多
查看译文
关键词
cholesterol biosynthesis,clobetasol propionate,glucocorticoids,mevalonate kinase deficiency,systemic autoinflammatory diseases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要