Spatiotemporal Evolution and Prediction of Ecosystem Carbon Storage in the Yiluo River Basin Based on the PLUS-InVEST Model

FORESTS(2023)

引用 0|浏览2
暂无评分
摘要
Land-use change has a great impact on regional ecosystem balance and carbon storage, so it is of great significance to study future land-use types and carbon storage in a region to optimize the regional land-use structure. Based on the existing land-use data and the different scenarios of the shared socioeconomic pathway and the representative concentration pathway (SSP-RCP) provided by CMIP6, this study used the PLUS model to predict future land use and the InVEST model to predict the carbon storage in the study area in the historical period and under different scenarios in the future. The results show the following: (1) The change in land use will lead to a change in carbon storage. From 2000 to 2020, the conversion of cultivated land to construction land was the main transfer type, which was also an important reason for the decrease in regional carbon storage. (2) Under the three scenarios, the SSP126 scenario has the smallest share of arable land area, while this scenario has the largest share of woodland and grassland land area, and none of the three scenarios shows a significant decrease in woodland area. (3) From 2020 to 2050, the carbon stocks in the study area under the three scenarios, SSP126, SSP245, and SSP585, all show different degrees of decline, decreasing to 36,405.0204 x 104 t, 36,251.4402 x 104 t, and 36,190.4066 x 104 t, respectively. Restricting the conversion of land with a high carbon storage capacity to land with a low carbon storage capacity is conducive to the benign development of regional carbon storage. This study can provide a reference for the adjustment and management of future land-use structures in the region.
更多
查看译文
关键词
land-use change,carbon stocks,CMIP6,PLUS model,InVEST model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要