Evaluating the Detection of Oceanic Mesoscale Eddies in an Operational Eddy-Resolving Global Forecasting System

JOURNAL OF MARINE SCIENCE AND ENGINEERING(2023)

引用 0|浏览0
暂无评分
摘要
In this study, a global analysis and forecasting system at 1/12 degrees is built for operational oceanography at the National Marine Environmental Forecasting Center (NMEFC) by using the NEMO ocean model (NMEFC-NEMO). First, statistical analysis methods are designed to evaluate the performance of sea level anomaly (SLA) forecasting. The results indicate that the NMEFC-NEMO performs well in SLA forecasting when compared with the Mercator-PSY4, Mercator-PSY3, UK-FOAM, CONCEPTS-GIOPS and Bluelink-OceanMAPS forecasting systems. The respective root-mean-squared errors (RMSEs) of NMEFC-NEMO (Mercator PSY4) are 0.0654 m (0.0663 m) and 0.0797 m (0.0767 m) for the lead times of 1 and 7 days. The anomaly correlation coefficients between forecasting and observations exceed 0.8 for the NMEFC-NEMO and Mercator-PSY4 systems, suggesting that the accuracy of SLA predicted using NMEFC-NEMO is comparable to Mercator PSY4 and superior to other forecasting systems. Moreover, the global spatial distribution of oceanic eddies are effectively represented in NMEFC-NEMO when compared to that in the HYCOM reanalysis, and the detection rate reaches more than 90% relative to HYCOM reanalysis. Regarding the strong eddies in the Kuroshio region, the NMEFC-NEMO reproduces the characteristic for anticyclonic and cyclonic eddies merging and splitting alternatively. As for the detective eddies in the Gulf Stream, NMEFC-NEMO effectively represents the spatial distribution of mesoscale eddies from different seasons. The amplitude of oceanic eddies, including both cyclones and anticyclones, were much stronger on 1 July 2019 than 1 January 2019. Overall, NMEFC-NEMO has a superior performance in SLA forecasting and effectively represents the oceanic mesoscale eddies for operational oceanography.
更多
查看译文
关键词
mesoscale eddies,eddy resolving,operational oceanography,sea level anomaly,anticyclones,cyclones,Kuroshio,Gulf Stream,analysis and forecasting system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要