Photodynamic Eradication of Pseudomonas aeruginosa with Ru-Photosensitizers Encapsulated in Enzyme Degradable Nanocarriers

Kawaljit Kaur,Max Mueller,Mareike Mueller,Holger Schoenherr, Udo Bakowsky, Eduard Preis

PHARMACEUTICS(2023)

引用 0|浏览0
暂无评分
摘要
The development of new approaches for the treatment of the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa was targeted by enhancing the effect of local antimicrobial photodynamic therapy (aPDT) using poly(ethylene glycol)-block-poly(lactic acid) (PEG114-block-PLAx) nanocarriers that were loaded with a ruthenium-based photosensitizer (PS). The action of tris(1,10-phenanthroline) ruthenium (II) bis(hexafluorophosphate) (RuPhen3) encapsulated in PEG114-block-PLAx micelles and vesicles was shown to result in an appreciable aPDT inactivation efficiency against planktonic Pseudomonas aeruginosa. In particular, the encapsulation of the PS, its release, and the efficiency of singlet oxygen (O-1(2)) generation upon irradiation with blue light were studied spectroscopically. The antimicrobial effect was analyzed with two strains of Pseudomonas aeruginosa. Compared with PS-loaded micelles, formulations of the PS-loaded vesicles showed 10 times enhanced activity with a strong photodynamic inactivation effect of at least a 4.7 log reduction against both a Pseudomonas aeruginosa lab strain and a clinical isolate collected from the lung of a cystic fibrosis (CF) patient. This work lays the foundation for the targeted eradication of Pseudomonas aeruginosa using aPDT in various medical application areas.
更多
查看译文
关键词
antimicrobial photodynamic therapy (aPDT),triggered release,Pseudomonas aeruginosa,amphiphilic block copolymers,micelles,polymersomes,singlet oxygen,photosensitizers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要