Electrospun Tamarindus indica-loaded antimicrobial PMMA/cellulose acetate/PEO nanofibrous scaffolds for accelerated wound healing: In-vitro and in-vivo assessments

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览4
暂无评分
摘要
In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indicaloaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.
更多
查看译文
关键词
Nanofibers,Electrospinning,Wound healing,Wound dressing,Tamarindus indica,PMMA,PEO,Cellulose acetate,Antimicrobial,In vitro,In vivo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要