Natural flavonoid pectolinarin computationally targeted as a promising drug candidate against SARS-CoV-2

CURRENT RESEARCH IN STRUCTURAL BIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Coronavirus disease-2019 (COVID-19) has become a global pandemic, necessitating the development of new medicines. In this investigation, we identified potential natural flavonoids and compared their inhibitory activity against spike glycoprotein, which is a target of SARS-CoV-2 and SARS-CoV. The target site for the interaction of new inhibitors for the treatment of SARS-CoV-2 has 82% sequence identity and the remaining 18% dissimilarities in RBD S1-subunit, S2-subunit, and 2.5% others. Molecular docking was employed to analyse the various binding processes used by each ligand in a library of 85 natural flavonoids that act as anti-viral medications and FDA authorised treatments for COVID-19. In the binding pocket of the target active site, remdesivir has less binding interaction than pectolinarin, according to the docking analysis. Pectolinarin is a natural flavonoid isolated from Cirsiumsetidensas that has anti-cancer, vasorelaxant, anti-inflammatory, hepatoprotective, anti-diabetic, anti-microbial, and anti-oxidant properties. The S-glycoprotein RBD region (330-583) is inhibited by kaempferol, rhoifolin, and herbacetin, but the S2 subunit (686-1270) is inhibited by pectolinarin, morin, and remdesivir. MD simulation analysis of S-glycoprotein of SARS-CoV-2 with pectolinarin complex at 100ns based on high dock-score. Finally, ADMET analysis was used to validate the proposed compounds with the highest binding energy.
更多
查看译文
关键词
Coronaviruses,SARS-CoV2,S-glycoproteins,Motif,Computational analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要