Designing 3D multicomponent self-assembling systems with signal-passing building blocks

Joshua Evans,Petr Sulc

JOURNAL OF CHEMICAL PHYSICS(2024)

引用 0|浏览2
暂无评分
摘要
We introduce an allostery-mimetic building block model for the self-assembly of 3D structures. We represent the building blocks as patchy particles, where each binding site (patch) can be irreversibly activated or deactivated by binding of the particle's other controlling patches to another particle. We show that these allostery-mimetic systems can be designed to increase yields of target structures by disallowing misassembled states and can further decrease the smallest number of distinct species needed to assemble a target structure. Next, we show applications to design a programmable nanoparticle swarm for multifarious assembly: a system of particles that stores multiple possible target structures and a particular structure is recalled by presenting an external trigger signal. Finally, we outline a possible pathway for realization of such structures at nanoscale using DNA nanotechnology devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要