Higher coactivations of lower limb muscles increase stability during walking on slippery ground in forward dynamics musculoskeletal simulation.

Scientific reports(2023)

引用 0|浏览0
暂无评分
摘要
The energy efficiency theory of human bipedal locomotion has been widely accepted as a neuro-musculoskeletal control method. However, coactivation of agonist and antagonist muscles in the lower limb has been observed during various limb movements, including walking. The emergence of this coactivation cannot be explained solely by the energy efficiency theory and remains a subject of debate. To shed light on this, we investigated the role of muscle coactivations in walking stability using a forward dynamics musculoskeletal simulation combined with neural-network-based gait controllers. Our study revealed that a gait controller with minimal muscle activations had a high probability of falls under challenging gait conditions such as slippery ground and uneven terrain. Lower limb muscle coactivations emerged in the process of gait controller training on slippery ground. Controllers with physiological coactivation levels demonstrated a significantly reduced probability of falls. Our results suggest that achieving stable walking requires muscle coactivations beyond the minimal level of muscle energy. This study implies that coactivations likely emerge to maintain gait stability under challenging conditions, and both coactivation and energy optimization of lower limb muscles should be considered when exploring the foundational control mechanisms of human walking.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要