Reconstitution of the phosphodiesterase 6 maturation process important for photoreceptor cell function

The Journal of biological chemistry(2024)

引用 0|浏览1
暂无评分
摘要
The 6 family phosphodiesterases (PDE6) are principal effector enzymes of the phototransduction cascade in rods and cones. Maturation of nascent PDE6 protein into a functional enzyme relies on a coordinated action of ubiquitous chaperone HSP90, its specialized cochaperone aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and the regulatory Pγ-subunit of PDE6. Deficits in PDE6 maturation and function underlie severe visual disorders and blindness. Here, to elucidate the roles of the HSP90, AIPL1, and Pγ in the maturation process, we developed the heterologous expression system of human cone PDE6C in insect cells allowing characterization of the purified enzyme. We demonstrate that in the absence of Pγ, HSP90 and AIPL1 convert the inactive and aggregating PDE6C species into dimeric PDE6C that is predominantly misassembled. Nonetheless, a small fraction of PDE6C is properly assembled and fully functional. From the analysis of mutant mice that lack both rod Pγ and PDE6C we conclude that, in contrast to the cone enzyme, no maturation of rod PDE6AB occurs in the absence of Pγ. Co-expression of PDE6C with AIPL1 and Pγ in insect cells leads to a fully mature enzyme that is equivalent to retinal PDE6. Lastly, using immature PDE6C and purified chaperone components, we reconstituted the process of the client maturation in vitro. Based on this analysis we propose a scheme for the PDE6 maturation process.
更多
查看译文
关键词
photoreceptor,phosphodiesterase 6,phototransduction,chaperone,HSP90,protein folding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要