Intramolecular Triplet Diffusion Facilitates Triplet Dissociation in a Pentacene Hexamer

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览5
暂无评分
摘要
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1(T1T1) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1(T1T1), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1(T1T1). Efficient free triplet generation via singlet fission remains elusive in covalent systems. We have developed a hexameric pentacene system, in which three pentacene dimers are covalently linked to a central subphthalocyanine scaffold. This allows for an entropically driven triplet diffusion, resulting in higher yields of free triplets, and establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems.+image
更多
查看译文
关键词
Oligoacene,Photoenergy Conversion,Singlet Fission,Triplet Dissociation,Ultrafast Spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要